Real-time Polyphonic Music Transcription with Non-negative Matrix Factorization and Beta-divergence
نویسندگان
چکیده
In this paper, we investigate the problem of real-time polyphonic music transcription by employing non-negative matrix factorization techniques and the β-divergence as a cost function. We consider real-world setups where the music signal arrives incrementally to the system and is transcribed as it unfolds in time. The proposed transcription system is addressed with a modified non-negative matrix factorization scheme, called non-negative decomposition, where the incoming signal is projected onto a fixed basis of templates learned off-line prior to the decomposition. We discuss the use of non-negative matrix factorization with the β-divergence to achieve the real-time decomposition. The proposed system is evaluated on the specific task of piano music transcription and the results show that it can outperform several state-of-the-art off-line approaches.
منابع مشابه
Real-Time Detection of Overlapping Sound Events with Non-Negative Matrix Factorization
In this paper, we investigate the problem of real-time detection of overlapping sound events by employing non-negative matrix factorization techniques. We consider a setup where audio streams arrive in real-time to the system and are decomposed onto a dictionary of event templates learned off-line prior to the decomposition. An important drawback of existing approaches in this context is the la...
متن کاملAutomatic music transcription using Non-negative matrix factorization
This paper proposes an effective method for the automatic music transcription in polyphonic music. The method consists of a combination of Non-negative Matrix Factorization (NMF), subharmonic summation method and onset detection algorithm. We decompose the magnitude spectrum of a music signal into the spectral component and the temporal information of every note using NMF. Then, the accurate pi...
متن کاملAutomatic Music Transcription based on Non-Negative Matrix Factorization
In this paper, we present a method for the automatic transcription of polyphonic piano music. The input to this method consists in piano music recordings stored in WAV files, while the pitch of all the notes in the corresponding score forms the output. This method operates on a frame-by-frame basis and exploits a suitable time-frequency representation of the audio signal. The solution proposed ...
متن کاملDrum Transcription in Polyphonic Music Using Non-Negative Matrix Factorisation
We present a system that is based on the non-negative matrix factorisation (NMF) algorithm and is able to transcribe drum onset events in polyphonic music. The magnitude spectrogram representation of the input music is divided by the NMF algorithm into source spectra and corresponding time-varying gains. Each of these source components is classified as a drum instrument or non-drum sound and a ...
متن کاملTwo Nonnegative Matrix Factorization Methods for Polyphonic Pitch Transcription
Polyphonic pitch transcription consists of estimating the onset time, duration and pitch of each note within a music signal. Adaptive signal models such as Nonnegative Matrix Factorization (NMF) appear well suited to this task, since they can provide a meaningful representation whatever instruments are playing. In this paper, we propose a simple transcription method using minimum residual loudn...
متن کامل